999 resultados para plant antigen


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Pollens of subtropical grasses, Bahia (Paspalum notatum), Johnson (Sorghum halepense), and Bermuda (Cynodon dactylon), are common causes of respiratory allergies in subtropical regions worldwide. Objective To evaluate IgE cross-reactivity of grass pollen (GP) found in subtropical and temperate areas. Methods Case and control serum samples from 83 individuals from the subtropical region of Queensland were tested for IgE reactivity with GP extracts by enzyme-linked immunosorbent assay. A randomly sampled subset of 21 serum samples from patients with subtropical GP allergy were examined by ImmunoCAP and cross-inhibition assays. Results Fifty-four patients with allergic rhinitis and GP allergy had higher IgE reactivity with P notatum and C dactylon than with a mixture of 5 temperate GPs. For 90% of 21 GP allergic serum samples, P notatum, S halepense, or C dactylon specific IgE concentrations were higher than temperate GP specific IgE, and GP specific IgE had higher correlations of subtropical GP (r = 0.771-0.950) than temperate GP (r = 0.317-0.677). In most patients (71%-100%), IgE with P notatum, S halepense, or C dactylon GPs was inhibited better by subtropical GP than temperate GP. When the temperate GP mixture achieved 50% inhibition of IgE with subtropical GP, there was a 39- to 67-fold difference in concentrations giving 50% inhibition and significant differences in maximum inhibition for S halepense and P notatum GP relative to temperate GP. Conclusion Patients living in a subtropical region had species specific IgE recognition of subtropical GP. Most GP allergic patients in Queensland would benefit from allergen specific immunotherapy with a standardized content of subtropical GP allergens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Genomic data are lacking for many allergen sources. To circumvent this limitation, we implemented a strategy to reveal the repertoire of pollen allergens of a grass with clinical importance in subtropical regions, where an increasing proportion of the world's population resides. Objective We sought to identify and immunologically characterize the allergenic components of the Panicoideae Johnson grass pollen (JGP; Sorghum halepense). Methods The total pollen transcriptome, proteome, and allergome of JGP were documented. Serum IgE reactivities with pollen and purified allergens were assessed in 64 patients with grass pollen allergy from a subtropical region. Results Purified Sor h 1 and Sor h 13 were identified as clinically important allergen components of JGP with serum IgE reactivity in 49 (76%) and 28 (43.8%), respectively, of patients with grass pollen allergy. Within whole JGP, multiple cDNA transcripts and peptide spectra belonging to grass pollen allergen families 1, 2, 4, 7, 11, 12, 13, and 25 were identified. Pollen allergens restricted to subtropical grasses (groups 22-24) were also present within the JGP transcriptome and proteome. Mass spectrometry confirmed the IgE-reactive components of JGP included isoforms of Sor h 1, Sor h 2, Sor h 13, and Sor h 23. Conclusion Our integrated molecular approach revealed qualitative differences between the allergenic components of JGP and temperate grass pollens. Knowledge of these newly identified allergens has the potential to improve specific diagnosis and allergen immunotherapy treatment for patients with grass pollen allergy in subtropical regions and reduce the burden of allergic respiratory disease globally.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: There is increasing interest in non-pharmacological control of cholesterol and triglyceride levels in the plasma and diet-drug association represent an important area of studies. The objective of this study was to observe the hypocholesterolemic effect of soybean β-conglycinin (7S protein) alone and combined with fenofibrate and rosuvastatin, two hypolipidemic drugs. Methods. The protein and drugs were administered orally once a day to rats and the effects were evaluated after 28 days. Wistar rats were divided into six groups (n = 9): hypercholesterolemic diet (HC), HC+7S protein (300 mg.kg-1 day-1) (HC-7S), HC+fenofibrate (30 mg.kg-1 day-1)(HC-FF), HC+rosuvastatin (10 mg.kg-1 day-1)(HC-RO), HC+7S+fenofibrate (HC-7S-FF) and HC+7S+rosuvastatin (HC-7S-RO). Results: Animals in HC-7S, HC-FF and HC-RO exhibited reductions of 22.9, 35.8 and 18.8% in total plasma cholesterol, respectively. In HC-7S-FF, animals did not show significant alteration of the level in HC+FF while the group HC-7S-RO showed a negative effect in comparison with groups taking only protein (HC-7S) or drug (HC-RO). The administration of the protein, fenofibrate and rosuvastatin alone caused increases in the plasma HDL-C of the animals, while the protein-drug combinations led to an increase compared to HC-FF and HC-RO. The plasma concentration of triacylgycerides was significantly reduced in the groups without association, while HC-7S-FF showed no alteration and HC-7S-RO a little reduction. Conclusion: The results of our study indicate that conglycinin has effects comparable to fenofibrate and rosuvastatin on the control of plasma cholesterol, HDL-C and triacylglycerides, when given to hypercholesterolemic rats, and suggests that the association of this protein with rosuvastatin alters the action of drug in the homeostasis of cholesterol. © 2012 Ferreira et al; licensee BioMed Central Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Antigen-specific antibody responses against a model antigen (the B subunit of the heat labile toxin of enterotoxigenic Escherichia coli, LTB) were studied in sheep following oral immunisation with plant-made and delivered vaccines. Delivery from a root-based vehicle resulted in antigen-specific immune responses in mucosal secretions of the abomasum and small intestine and mesenteric lymph nodes. Immune responses from the corresponding leaf-based vaccine were more robust and included stimulation of antigen-specific antibodies in mucosal secretions of the abomasum. These findings suggest that oral delivery of a plant bioencapsulated antigen can survive passage through the rumen to elicit mucosal and systemic immune responses in sheep. Moreover, the plant tissue used as the vaccine delivery vehicle affects the magnitude of these responses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study investigated the site of release of a model vaccine antigen from plant cells and the corresponding induced immune response. Three plant tissues (leaf, fruit and hairy root) and two formulations (aqueous and lipid) were compared in two mouse trials. A developed technique that enabled detection of antigen release by plant cells determined that antigen release occurred at early sites of the gastrointestinal tract when delivered in leaf material and at later sites when delivered in hairy roots. Lipid formulations delayed antigen release from all plant materials tested. While encapsulation in the plant cell provided some protection of the antigen in the gastrointestinal tract and influenced antigen release, formulation medium was also an important consideration with regard to vaccine delivery and immunogenicity. Systemic immune responses induced from the orally delivered vaccine benefited from late release of antigen in the mouse gastrointestinal tract. The influences to the mucosal immune response induced by these vaccines were too complex to be determined by studies performed here with no clear trend regarding plant tissue site of release or formulation medium. Expression and delivery of the model antigen in plant material prepared in an aqueous formulation provided the optimal systemic and mucosal, antigen-specific immune responses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The focus of the Children's Vaccine Initiative is to encourage the discovery of technology that will make vaccines more readily available to developing countries. Our strategy has been to genetically engineer plants so that they can be used as inexpensive alternatives to fermentation systems for production of subunit antigens. In this paper we report on the immunological response elicited in vivo by using recombinant hepatitis B surface antigen (rHBsAg) purified from transgenic tobacco leaves. The anti-hepatitis B response to the tobacco-derived rHBsAg was qualitatively similar to that obtained by immunizing mice with yeast-derived rHBsAg (commercial vaccine). Additionally, T cells obtained from mice primed with the tobacco-derived rHBsAg could be stimulated in vitro by the tobacco-derived rHBsAg, yeast-derived rHBsAg, and by a synthetic peptide that represents part of the a determinant located in the S region (139-147) of HBsAg. Further support for the integrity of the T-cell epitope of the tobacco-derived rHBsAg was obtained by testing the ability of the primed T cells to proliferate in vitro after stimulation with a monoclonal anti-idiotype and an anti-idiotype-derived peptide, both of which mimic the group-specific a determinant of HBsAg. In total, we have conclusively demonstrated that both B- and T-cell epitopes of HBsAg are preserved when the antigen is expressed in a transgenic plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The obtainment of transgenic edible plants carrying recombinant antigens is a desired issue in search for economic alternatives viewing vaccine production. Here we report a strategy for genetic transformation of lettuce plants (Lactuca sativa L.) using the surface antigen HBsAg of hepatitis B virus. Transgenic lettuce seedlings were obtained through the application of a regulated balance of plant growth regulators. Genetic transformation process was acquired by cocultivation of cotyledons with Agrobacterium tumefaciens harboring the recombinant plasmid. It is the first description of a lettuce Brazilian variety Vitória de Verão genetically modified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Possums (Trichosurus vulpecula), originally introduced from Australia, are spread over 90% of New Zealand and cause major economic and environmental damage. Immunocontraception has been suggested as a humane means to control them. Marsupial-specific reproductive antigens expressed at high levels in edible transgenic plant tissue might provide a safe, effective, and cheap oral delivery bait for immuno-contraceptive control. As proof of concept, female possums vaccinated with immunocontraceptive antigens showed reduced fertility, and possums fed with potato-expressed heat labile toxin-B (LT-B) had mucosal and systemic immune responses to the antigen. This demonstrated that immunocontraception was effective in possums and that oral delivery in edible plant material might be possible. Nuclear transformation with reporter genes showed that transgenic carrot roots accumulate high levels of foreign protein in edible tissues, indicating their potential as a delivery vector. However, prior to attempts at large scale production, more effective immunocontraceptive antigen-adjuvant formulations are probably required before plant-based immunocontraception can become a major tool for immunocontraceptive control of overabundant vertebrate pests. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific mechanisms by which selective pressures affect individuals are often difficult to resolve. In tephritid fruit flies, males respond strongly and positively to certain plant derived chemicals. Sexual selection by female choice has been hypothesized as the mechanism driving this behaviour in certain species, as females preferentially mate with males that have fed on these chemicals. This hypothesis is, to date, based on studies of only very few species and its generality is largely untested. We tested the hypothesis on different spatial scales (small cage and seminatural field-cage) using the monophagous fruit fly, Bactrocera cacuminata. This species is known to respond to methyl eugenol (ME), a chemical found in many plant species and one upon which previous studies have focused. Contrary to expectation, no obvious female choice was apparent in selecting ME-fed males over unfed males as measured by the number of matings achieved over time, copulation duration, or time of copulation initiation. However, the number of matings achieved by ME-fed males was significantly greater than unfed males 16 and 32 days after exposure to ME in small cages (but not in a field-cage). This delayed advantage suggests that ME may not influence the pheromone system of B. cacuminata but may have other consequences, acting on some other fitness consequence (e.g., enhancement of physiology or survival) of male exposure to these chemicals. We discuss the ecological and evolutionary implications of our findings to explore alternate hypotheses to explain the patterns of response of dacine fruit flies to specific plant-derived chemicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microclimate and host plant architecture significantly influence the abundance and behavior of insects. However, most research in this field has focused at the invertebrate assemblage level, with few studies at the single-species level. Using wild Solanum mauritianum plants, we evaluated the influence of plant structure (number of leaves and branches and height of plant) and microclimate (temperature, relative humidity, and light intensity) on the abundance and behavior of a single insect species, the monophagous tephritid fly Bactrocera cacuminata (Hering). Abundance and oviposition behavior were signficantly influenced by the host structure (density of foliage) and associated microclimate. Resting behavior of both sexes was influenced positively by foliage density, while temperature positively influenced the numbers of resting females. The number of ovipositing females was positively influenced by temperature and negatively by relative humidity. Feeding behavior was rare on the host plant, as was mating. The relatively low explanatory power of the measured variables suggests that, in addition to host plant architecture and associated microclimate, other cues (e.g., olfactory or visual) could affect visitation and use of the larval host plant by adult fruit flies. For 12 plants observed at dusk (the time of fly mating), mating pairs were observed on only one tree. Principal component analyses of the plant and microclimate factors associated with these plants revealed that the plant on which mating was observed had specific characteristics (intermediate light intensity, greater height, and greater quantity of fruit) that may have influenced its selection as a mating site.